Pages

Tuesday, January 20, 2009

PAX 8 Gene

The official name of PAX8 gene is “paired box 8". The PAX8 gene belongs to a family of genes that plays a critical role in the formation of tissues and organs during embryonic development. The PAX gene family is also important for maintaining the normal function of certain cells after birth. To carry out these roles, the PAX genes provide instructions for making proteins that attach to specific areas of DNA. By attaching to critical DNA regions, these proteins help control the activity of particular genes (gene expression). On the basis of this action, PAX proteins are called transcription factors.

During embryonic development, the PAX8 protein is thought to activate genes involved in the formation of the kidney and the thyroid gland. The thyroid gland is a butterfly-shaped tissue in the lower neck. It releases hormones that play an important role in regulating growth, brain development, and the rate of chemical reactions in the body (metabolism). Following birth, the PAX8 protein regulates several genes involved in the production of thyroid hormones.
PAX8 protein


 

Location:

PAX8 Gene is present in human chromosome 2 and its coded from region113,691,409 to 113,752,967 Complement base pairs with 9 exons, the cytogenetic location 2q12-q14.

Disease

Mutations in PAX8 gene causes congenital hypothyroidism.Several PAX8 mutations have been identified, but the effect of these mutations on health is variable. Some mutations cause congenital hypothyroidism, while others mildly reduce thyroid hormone levels or have no detectable effect. In some cases, identical mutations in members of the same family have varied effects.



Most mutations change one of the building blocks (amino acids) used to make the PAX8 protein. Other mutations disrupt protein production, resulting in an abnormally small version of the PAX8 protein. Nearly all PAX8 mutations prevent the PAX8 protein from effectively binding to DNA. One mutation alters interactions between the PAX8 protein and other transcription factors. As a result, the PAX8 protein cannot perform its role in regulating the activity of certain genes.

The thyroid gland is unusually small in people with PAX8 mutations. This finding suggests that PAX8 mutations disrupt the normal growth or survival of thyroid cells during embryonic development. As a result, the thyroid gland is reduced in size and may be unable to produce the normal amount of thyroid hormones.

PAX3 gene

The official name of PAX3 gene is “paired box 3". The PAX3 gene belongs to a family of genes that plays a critical role in the formation of tissues and organs during embryonic development. The PAX gene family is also important for maintaining the normal function of certain cells after birth. To carry out these roles, the PAX genes provide instructions for making proteins that attach to specific areas of DNA. By attaching to critical DNA regions, these proteins help control the activity of particular genes. On the basis of this action, PAX proteins are called transcription factors.
During embryonic development, the PAX3 gene is active in cells called neural crest cells. These cells migrate from the developing spinal cord to specific regions in the embryo. The protein made by the PAX3 gene directs the activity of other genes (such as MITF) that signal neural crest cells to form specialized tissues or cell types such as limb muscles, bones in the face and skull (craniofacial bones), some nerve tissue, and pigment-producing cells called melanocytes. Melanocytes produce the pigment melanin, which contributes to hair, eye, and skin color. Melanocytes are also found in certain regions of the brain and inner ear.

Location:

PAX3 Gene is present in human chromosome 2 and its coded from region 222,772,850 to 222,871,943 Complement base pairs with 9  exons, the cytogenetic location 2q35-q37.
PAX3 Protein



  Subscribe in a reader


Disease

Mutations in PAX3  gene causes Waardenburg syndrome   Several PAX3 mutations have been identified in people with Waardenburg syndrome, types I and III. Some of these mutations change one of the chemical building blocks (amino acids) used to make the PAX3 protein. Other mutations lead to an abnormally small version of the PAX3 protein. Researchers believe that all PAX3 mutations have the same effect; they destroy the ability of the PAX3 protein to bind to DNA and regulate the activity of other genes. As a result, melanocytes do not develop in certain areas of the skin, hair, eyes, and inner ear, leading to hearing loss and the patchy loss of pigmentation that are characteristic features of Waardenburg syndrome. Additionally, loss of PAX3 protein function disrupts development of craniofacial bones and certain muscles, producing the limb and facial features that are unique to Waardenburg syndrome, types I and III.

    Alterations in the activity of the PAX3 gene are associated with some cases of cancer of muscle tissue (alveolar rhabdomyosarcoma) that occur mainly in adolescents and young adults. Gene activity is altered when the PAX3 gene on chromosome 2 is fused with the FOXO1A gene (also called FKHR) on chromosome 13. This fusion event occurs when segments of chromosomes 2 and 13 are rearranged in certain cells that develop into muscle tissue. The fused PAX3-FOXO1A gene may enhance changes that can lead to cancer, such as uncontrolled cell division and cell growth.



# Arnold K., Bordoli L., Kopp J., and Schwede T. (2006). The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics, 22,195-201.
# Schwede T, Kopp J, Guex N, and Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Research 31: 3381-3385.

# Guex, N. and Peitsch, M. C. (1997) SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modelling. Electrophoresis 18: 2714-2723.